On three-dimensional $N(k)$-paracontact metric manifolds and Ricci solitons

نویسندگان

  • K. Mandal Department of Pure Mathematics‎, ‎University of Calcutta‎, ‎35‎, ‎Ballygunge Circular Road‎, ‎Kol‎- ‎700019‎, ‎West Bengal‎, ‎India.
  • S. Deshmukh Department of Mathematics‎, ‎College of Science‎, ‎King saud University‎, ‎P.O‎. ‎Box-2455‎, ‎Riyadh-11451‎, ‎Saudi Arabia.
  • U.C. De Department of Pure Mathematics‎, ‎University of Calcutta‎, ‎35‎, ‎Ballygunge Circular Road‎, ‎Kol‎- ‎700019‎, ‎West Bengal‎, ‎India.
چکیده مقاله:

The aim of this paper is to characterize $3$-dimensional $N(k)$-paracontact metric manifolds satisfying certain curvature conditions. We prove that a $3$-dimensional $N(k)$-paracontact metric manifold $M$ admits a Ricci soliton whose potential vector field is the Reeb vector field $xi$ if and only if the manifold is a paraSasaki-Einstein manifold. Several consequences of this result are discussed. Finally, an illustrative example is constructed.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ricci solitons in contact metric manifolds

In N(k)-contact metric manifolds and/or (k, μ)-manifolds, gradient Ricci solitons, compact Ricci solitons and Ricci solitons with V pointwise collinear with the structure vector field ξ are studied. Mathematics Subject Classification: 53C15, 53C25, 53A30.

متن کامل

Ricci Solitons on Compact Three-manifolds

In this short article we show that there are no compact three-dimensional Ricci solitons other than spaces of constant curvature. This generalizes a result obtained for surfaces by Hamilton [4]. The proof involves a careful analysis of the ODE for the curvature which is associated to the Ricci flow.

متن کامل

On (k, μ)-Paracontact Metric Manifolds

The object of this paper is to study (k, μ)-paracontact metric manifolds with qusi-conformal curvature tensor. It has been shown that, h-quasi conformally semi-symmetric and φ-quasi-conformally semi-symmetric (k, μ)-paracontact metric manifold with k 6= −1 cannot be an η-Einstein manifold.

متن کامل

Indefinite Almost Paracontact Metric Manifolds

In this paper we introduce the concept of (ε)-almost paracontact manifolds, and in particular, of (ε)-para Sasakian manifolds. Several examples are presented. Some typical identities for curvature tensor and Ricci tensor of (ε)-para Sasakian manifolds are obtained. We prove that if a semi-Riemannian manifold is one of flat, proper recurrent or proper Ricci-recurrent, then it can not admit an (ε...

متن کامل

Eta-Ricci solitons on para-Kenmotsu manifolds

In the context of paracontact geometry, η-Ricci solitons are considered on manifolds satisfying certain curvature conditions: R(ξ,X) · S = 0, S · R(ξ,X) = 0, W2(ξ,X) · S = 0 and S · W2(ξ,X) = 0. We prove that on a para-Kenmotsu manifold (M,φ, ξ, η, g), the existence of an η-Ricci soliton implies that (M, g) is quasi-Einstein and if the Ricci curvature satisfies R(ξ,X) · S = 0, then (M, g) is Ei...

متن کامل

Ricci Flow on Three-dimensional, Unimodular Metric Lie Algebras

We give a global picture of the Ricci flow on the space of three-dimensional, unimodular, nonabelian metric Lie algebras considered up to isometry and scaling. The Ricci flow is viewed as a two-dimensional dynamical system for the evolution of structure constants of the metric Lie algebra with respect to an evolving orthonormal frame. This system is amenable to direct phase plane analysis, and ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 43  شماره 6

صفحات  1571- 1583

تاریخ انتشار 2017-11-30

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023